If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-4t-0.3=0
a = 1; b = -4; c = -0.3;
Δ = b2-4ac
Δ = -42-4·1·(-0.3)
Δ = 17.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-\sqrt{17.2}}{2*1}=\frac{4-\sqrt{17.2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+\sqrt{17.2}}{2*1}=\frac{4+\sqrt{17.2}}{2} $
| +6x-36+4=-32+6x | | -5w-19w+11w+18w=10 | | A=5x-15B=2x+21 | | (x-9)/3+(x-1)/4=7/3 | | 6x2=486 | | 2/3(4x-1)-3x=4/5-(x+2) | | 2y-2y+3y+3y+4y=10 | | 7x+13X-1=5(4x+6) | | 2g+9g+g=110 | | 171=-9p | | 2g+9g=110 | | −2(3x+8)=−3(4x+3) | | 0.3*n=0.24 | | c+4c-5c+4c=12 | | 9/4x+1=+1=11/2 | | 15j+4j-12j+3j-7j=12 | | -7x2=-567 | | 6=-2-2(7-c) | | 7x+6=8x+0 | | 17-c=3 | | 9r+6r-11r=8 | | 17−c=3 | | 14+7=-3(4x-7 | | 6-2r+1=5(r-2) | | 5x^2+24x=36 | | 4(x-5)=8x-(20+4x) | | 9u+10=-62 | | 10v+-9v=7 | | 8v-v=7 | | b/8+70=79 | | 18p-17p=7 | | 4(5x-6)=3(8x+2) |